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e Artificial Intelligence is loosely defined
as intelligence exhibited by machines

e Operationally: R&D in CS academic
sub-disciplines: Computer Vision,
Natural Language Processing (NLP),
Robotics, etc

‘0 AlphaGo  Lee Sedol

AlphaGo uses DL to beat world champion at Go



Artificial General Intelligence (AGI)

e Al : specific tasks,

e AGI : general cognitive
abllities.

e AGI is a small research
area within Al: build
machines that can
successfully perform any
task that a human might do

e So far, no progress on AGI.




Deep Learning vs. traditional
Machine Learning

Machine Learning (ML) has been

around for some time. hai Shlev-Shwartz and Shai Ben-Davi
UNDERSTANDING

Deep Learning is newer branch of MACHINE

ML which uses Deep Neural LEARNING

networks.

ML has theory: error estimates and — - 5 A\ : :
7 aa A LR\ T Machine Learning

convergence proofs. X A Probabilistic Perspective

DL less theory. But DL can effectively
solve substantially larger scale
problems



What are DNNs (in Math Language)?

Definition 1.1. Assume the data is normalized so that the data space is X =
0,1]¢. Write D,, = x1,...,x, for the training data. Assume D,, is a sequence
of 1.1.d. random variables on X sampled from the probability distribution p. We
consider the classification problem with m labels which are imbedded into the
probability simplex, the label space, ¥ C R™. Write ug : X — Y for the map
from data to label space, so that y; = ug(z;).

® |mageNet: Total number of classes: m =284

® Total number of images: n =14,197,122

® Color images d= 3*256%256= 196,608

Facebook used 256 GPUs, working in parallel, to
train ImageNet.

Still an academic dataset. Total number of images
on Facebook is much larger




What is the function!?
Looking for a map from images to labels
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X in M = manifold of images

graph of list of word labels



Doing the impossible?

In theory, due to curse of
dimensionality, impossible to
accurately interpolate a high g™y
dimensional function. .

Two ogs pl in the grass.

In practice, possible using Deep
Neural Network architecture, ‘ ‘
training to fit the data with SGD. . e,

: . A group of young people Two hoc':;ye :"t?‘v:; :'f: fighting A little girl in a pink hat is
However we d on t kn oW Why |t playing a game of frisbee. blowing bubbles.
works.

Can train a computer to caption images more A herd of elephants walking A close up of a cat laying A red motorcycle parked on the

accurately that human performance SEROES RS IR S side of the road.
Fi 1gure 1. At the current state-of-art more than 95% of 1mages can be (

R e T A e I - MR R Y c A DS T e



Loss Functions versus Error
Classification problem: map image to discrete label space {1,2,3,...,10}
In practice: map to a probability vector, then assign label of the arg max.

Classification is not differentiable, so instead, in order to train, use a loss function as a
surrogate.

Assumption 2.3 (Loss function). The function /: Y XY — R is a loss function
if it satisfies (i) £ > 0, (ii) £(y1,y2) = 0 if and only if y; = vy, and (iii) £ is strictly
convex In ;.

Example 2.4 (R™ with L* loss). Set Y = R™, and let each label be a basis vector.
Set ¢(y1,vy2) = ||ly1 — 2|5 to be the L* loss.

Example 2.5 (Classification). In classification problems, the output of the network

is a probability vector on the labels. Thus Y = A,,, the p-dimensional probability

simplex, and each label 1s mapped to a basis vector. The cross-entropy loss is
NP

given by (%5 (y, z) = " zilog(yi/z). For labels, (%*(y,er) = —log(yk).



DNNs in Math Language: high dimensional function fitting

minE, ., ((f(z;w) Zf (53 w), y(x;))

w

Data fitting problem: f parameterized map from images to probability vectors on labels.
y is the correct label. Try to fit data by minimizing the loss.

Training: minimize expected loss, by taking stochastic (approximate) gradients

Note: train on an empirical distribution sampled from the density rho.



Generalization. Training set and test set

Goal: generalization: hope that training error is a good estimate of the generalization
loss, which is the expected loss on unseen images drawn from the same distribution.

b (@0, () = [ (i) y(a)dp(a)

Testing: reserve some data and 10 _Training set 10 — Test set
approximate the generalization loss/ o o "/

51 = Ly 51 e |
error on the test data, which is a /% EAVAN ./'/’ AVA

Or N o . - ]3 ®e o) o _
surrogate for the true expected error A oL Y o4

_// @) E —_ ;_/,/
on the full density. 7l e,
~10 1 ' ' _10!

-2 -1 0 1 2 —2 -1 0 1 2

Orange curve: overtrained. Green curve better generalization

S (2:0), y(2)) = DU f (i), y()




Challenges for deep learning

Self-Driving Uber Hits, Kills
“It is not clear that the existing Al  Pedestrian in Arizona

paradigm is immediately amenable  Fir i scim s e e et ense
to any sort of software engineering @ o e vz

validation and verification. Thisisa f***?¢%==°

serious issue, and is a potential i ¢
roadblock to DoD’s use of these
modern Al systems, especially
when considering the liability and

accountability of using Al”

JASON report




Mary Shaw’s evolution of
software engineering discipline

Science

Production Professional engineering

Commercial

* Virtuosos and talented * Skilled craftsmen * Educated professionals
ama?gurs * Established procedure * Analysis and theory
* Intuition and brute force * Pragmatic refinement * Progress relies on science
* Haphazard progress » Training in mechanics * Educated professional class
* Casual transmission « Economic concern for cost  * Enabling new applications
e Extravagant use of and supply of materials through analysis
available materials e Manufacture for sale * Market segmentation by
» Manufacture for use product variety

rather than sale

Better theory: improves reliability and discipline evolves



Entropy-SGD

Fratik Chaudhari Stanley Osher, UCLA Stefano Soatto  Guillaume Carlier,
UCLA (now Amazon/ . o UCLA Comp Sci. CEREMADE, U. Parix

U Penn) IX Dauphine

e 2017 UCLA PhD student (at time of research)
e 2018 (present) Amazon research
e Fall 2019 Faculty in ESE at U Penn

Deep Relaxation: partial differential equations for optimizing deep neural networks Pratik Chaudhari,Adam M.
Oberman, Stanley Osher, Stefano Soatto, Guillame Carlier 2017
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Entropy SGD results in Deep Neural Networks (Pratik)

Visualization of Improvement in training loss (left)
Improve in Validation Error (right)

(A) All-CNN: Training loss
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(B) All-CNN: Validation error



Different Interpretation: Regularization using Viscous
Hamilton-Jacobi PDE

f(x)

Uyiscous H](x' T)
\\ Unon-viscous HJ (x,T)

l“l ’
\h ||
\ |

|

|

)

Solution of PDE in one dimension. Cartoon: Algorithm only solves PDE for time depending on Hf(x).



Expected Improvement Theorem in continuous time

Theorem 11. Let x.q(s) and xgeq(s) be solutions of (CSGD) and (SGD),
respectively, with the same initial data Xx¢seq(0) = X55a(0) = x0. Fix a timet > 0
and a terminal function, V (x). Then

J [V(xcsgd(t))] <E [V(xsgd(t))} _% J -/Ot ‘a(xcsgd(s)as”z dS- '

The optimal control is given by o(x,t) = Vu(x,t), where u(x,t) is the solution
of (HJB) along with terminal data u(x,T) =V (x).



Adaptive-SGD

joint with PhD Student Mariana Prazeres




Model for mini-batch gradients: k=1 means.

full gradient 1 n

mini-batch

For k>1 means, same calculation applies, if we restrict to the active
indices. This leads to smaller active batch sizes, and higher variance



Motivation: quality of gmg depends on x

0.5} - oL
TF o
Or . of )
1t
0.5 . 2

Minibatch gradients, their average (green), contours of |z — z*|.

» far from x™ mb gradients point in a good direction.
* near x* require more samples, or small steps (so that directions average in 1



Adapt in Space instead of Time

_— 0.5 _
use MB = 10 | use MB = 60

-0.5

-1 -0.5 0 0.5 1

The ideal learning rate/batch size combination should
depend on x (space) rather than k (time).



Adaptive SGD

- Adaptively, depending on x, decide on
- MB size, or
* learning rate.
* Use the following formula (derived later)

(SAGD) Trpt1 = Tp — M Vs f(Tk)

flzk) — f°
(SALR) e < 2 |V f () [|2]

- f large, learning rate large (ok to use small MB)
- ¢ small, var(MB) restricts learning rate (so use large MB)



Benchmarks: Fix MB and adapt h

f(x) - f (for a typical run)

10° 1
’ —— Scheduled

—— Scheduled 1/t
Adaptive

0 100 200 300 400 500 600

1OO§

107 |

f(x) - f*(Averaged over 40 runs)

—— Scheduled
—— Scheduled 1/
Adaptive
!
R S~ -
—— ]
0 100 200 300 400 500 600

Left: Not too clear what is happening with one path.
Right: Average over several runs to see the trend



Paths of Scheduled and Adaptive SGD

02r

0.15F

0.1

-0.15 F

_0.2 | | |
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

The variance of the paths is clear from this figure



Proof of Convergence with Rate

Theorem 3.4. Suppose | s pu-strongly convex and L-smooth. Define
the SGD update (SAGD) with adaptive learning rate given by (SALR).

Assume

() i er] = 0
Then

1

< , k>0
dk > Ckk—l- qo_l fOT a ll

where

B M

O =

;’i - (L — 1) qo

rate is same order at SGD, but with better constant



Proof of Convergence and

Generalization for Lipschitz
Regularized DNNs

joint with Jeff Calder

Lipschitz regularized Deep Neural Networks converge and generalize O. and Jeff Calder; 2018



Background
on the generalization/convergence result



Problem: traditional ML theory does not apply to
Deep Learning

‘ irt nd Shar Ben-David

UNDERSTANDING

MACHINE
LEARNING

“Understanding Deep Learning requires
rethinking generalization” Zhang (2016)

Learning networks. Two things to make clear to the reader (1) We don’t know

how Deep Learning works and (2) when it makes a prediction, we don’t have

an explanation why it arrived at that prediction. That is just scratching the

A new idea is needed to make Deep Learning more reliable.



inspiration: old idea: Total Variation Denoising [1992] R-Osher-F.

Ornginal Molsy Image Denoised image

used in early, high
profile image
reconstruction of
video Images.

J|u| = Llu; up| + AR|Vul

e minimize a variational functional: combination of a loss term, to
the original noisy image, and a regularization term

e Regularization is large on noise, small on images




Regularization: from images to maps
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X in M = manifold of images

word labels

A
o, the learned map: well-behaved on data manifold, but
\.‘\“ﬁ very bad off the manifold (without regularization)



What is new in our result?

Bartlett proved generalization under the assumption of Lipschitz
regularity.
However, DNNs are not uniformly Lipschitz

By adding regularization to the objective function in the training, we
obtain the uniform Lipschitz bounds

1.1. Related work and applications. Generalization bounds have been obtained
previously by using the Lipschitz constant of a network (Bartlett, 1997), as well
as by using more general stability results (Bousquet & Elisseeff, 2002). More re-
cently, (Bartlett et al. , 2017) proposed the Lipschitz constant of the network as
a candidate measure for the Rademacher complexity, which a measure of general-
ization (Shalev-Shwartz & Ben-David, 2014, Chapter 26). However, our analysis
Is more direct and self-contained, and unlike other recent contributions such as
(Hardt et al. , 2015), it does not depend on the training method.



Approaches to regularization

A. Machine Learning: learn data using an min K, 0(f(z;w), y(z))
appropriate (smooth) parameterized class of %
functions

B. Algorithmic: use an algorithm which selects kel k
the best solution (e.g. Stochastic Gradient W = wt A+ e Vinpl(. - w)

Descent as a regularizer, adversarial training)
C. Inverse problems: allow for a broad class of
functions, but modify the loss to choose the

right one min B, 0(f (z; w), y(x)) + M| VeS|l e (x,p)

w




Comment for math audience

Our result may not be surprising to math experts
However, it is a new approach to generalization theory.

Speaking personally, the hard work was giving a math interpretation of
the problem (1.5 years)

Once the model was set up correctly, and we realized we could
implement it in a DNN, the math was relatively easier.

Paper and proof was done in about 6 weeks.



Convergence: two cases

Clean Labels:

* relevant in benchmark data sets and Noisy labels:
applications, * relevant in applications,

» simpler proof, since the clean lable + familiar setting for calculus of
function is a2 minimizers variations

* regime of perfect data interpolation
possible with DNNs
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Statement and proof sketch of
the generalization/convergence result



Lipschitz Regularization of DNNs

Data function: augment the expected loss function on the data
with a Lipschitz regularization term

(1) min J"|f - Z(’ cug(x;)) + Amax(Lip(f) — Ly, 0)

1 XY

where Lo is Lipschitz constant of the data, and n is number of data points.
We are interested in the limit as we sample more points. The limiting
funtional is given by

(5) JHPP ] = /Xé(u(x), uo(x))dp(x) + Amax(Lip(u) — Lg, 0)



Convergence theorem for Noisy Labels

Theorem 2.11. Suppose that infr,,p > 0, £ : Y XY — R is Lipschitz, and let
uw* € WhH(X;Y) be any minimizer of the limiting functional (6). Then with
probability one

u, —> u" uniformly on M = supp(p) as n — oo,

where u,, is any sequence of minimizers of (1). Furthermore, every uniformly
convergent subsequence of u,, converges on X to a minimizer of (6).

-2 -1.5 -1 0.5 0 0.5 1 1.5 2

Convergence on the data manifold. Lipschitz off.



Convergence for clean labels (with a rate)

Theorem 2.7. Suppose that Lip|ug] < Lo and inf,crp(x) > 0. If f,, is any

sequence of minimizers of (1) then for any t > 0

tlog(n) ) tm

n

1wy — follLe(myy < CLy (

holds with probability at least 1 — C't—'n—(¢t=1),

- Rate of convergence, on the data manifold, of the minimizers.
 The rate depends on, n, the number of data points sampled and, m,

the number of labels.

- Probabilistic bound, where obtain a given error with high
probability

* uniform sampling vs random sampling: the log term and the
probability goes away



Proof

Lemma 2.9. Suppose that infrp > 0. Then for anyt > 0

tlog(n) ) tjm

I~ 0l s < € (%
with probability at least 1 — C't—'n~(¢t=1),
We now give the proof of Theorem 2.7.

Proof of Theorem 2.7. Since J,|u,| = J,|ug] = 0, we must have Lip|u,| < Ly

and ug(z;) = u,(x;) for all 1 <7 < n. Then for any x € X we have

[uo(x) — un(2)|ly = [|uo(x) — uo(on(x)) + uo(0n (7)) — Un(on(x)) + un(on()) — un()|ly
< |luo(z) — uo(on(2))|ly + l[un(on(z)) — un(z)|ly
< 2Lo||lz — on()||x-

Therefore, we deduce

Juo — UnHLoo(M;Y) < 2Lo||ld — UnHLoo(M;X)-

The proof is completed by invoking Lemma 2.9.




Generalization follows

As an immediate corollary, we can prove that the generalization loss converges
to zero, and so we obtain perfect generalization.

Corollary 2.8. Assume that for some q > 1 the loss ¢ satisfies

(6) Uy, yo0) < Clly — yoll§- for all yo,y € Y.

Then under the assumptions of Theorem 2.7

q/m
Liu,. g < OL (tlog(n))

n

holds with probability at least 1 — C't~tn=(ct—1).

Proof. By (6), we can bound the generalization loss as follows

Luy, p| = /M U(un(z), uo(x)) dVol(z) < CVol(M)[[un — uo|| e rry):

The proof is completed by invoking Theorem 2.7.




Lipschitz Regularization improves
Adversarial Robustness

\
A
g S i
- / X =
: \‘}‘75«' L b=
L0 A : VA % i
N 3 1 BH

Chris Finlay (current PhD student)  Bilal Abbasi (former PhD now working in Al)

Improved robustness to adversarial examples using Lipschitz regularization of the loss

Chris Finlay, O., Bilal Abbasi; Oct 2018; arxiv



Adversarial Attacks

gradient vector from a particular
panda to the nearest gibbon boundary

&£

“panda” “nemat Ode” “gibbon”
57.7% confidence 8 2% confidence 99.3 % confidence



Adversarial Attacks on the loss

Definition 2.1 (Adversarial attacks). Write ¢*(z) for the correct label and ¢(x) =
arg max, f(x); for the classifier. An adversarial attack a = a(x), is a perturbation
of the input z which leads to incorrect classification c(z + a(x)) # c*(x).

Adversarial attacks seek to find the minimum norm attack vector, which is
an intractable problem (Athalye et al., 2018). An alternative which permits loss
gradients to be used, is to consider the attack vector of a given norm which most

Increases the loss, /.
(3) max {(f(z +a),y)

lal[<e



Scale measures visible attacks

<Wd.ﬁl.!$ﬂﬂ..
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DNNs are vulnerable to attacks which are invisible to the human eye.
Undefended networks have 100% error rate at .| (in max norm)



Implementation of Lipschitz Regularization of the Loss

Write ((x) = ((f(x), uo(x)).
Write Ly, s for the Lipschitz constant of loss of the model.

Definition 3.1. The Lipschitz constant of a function f is given by

(9) Lip, . (f) = max |/ (1) = f@2)]lo

nFry ||z — Zal|2

When f is differentiable on a closed, bounded domain, X, then
(10) Lip(f) = max [V f(z) ..

we can approximate the Lipschitz constant by testing on the data

max ||V f(x)|l2,0c < Lip(f)



Robustness bounds from the Lipschitz constant of the Loss

a successful attack on image = will have adversarial distance at least

i (x) — fi(2)

where L is the Lipschitz constant of the model, f, and 7" is the correct label of
T.

So training the model to have a better Lipschitz constant
will improve the adversarial robustness bounds.



% misclassified

100-

80 -

60 -

40 -

20 -

0

10-3 10-2 10!
Euclidean adversarial distance

Arms race of attack methods and defences
ResNeXt34, CIFAR-10

- Boundary Attack
DeepFool
- [> Projected Gradient

I-FGSM

-  Gradient
FGSM

- Data stability

|

’

Too

o

We tested against toolbox of attacks.
Plotted the error curve as a function
of the adversarial size.

Strongest attacks:
| Iterative |2-projected gradient

2. Iterative Fast Gradient Signed
Method (FGSM)



Adversarial Training: interpretation as
regularization

Write ¢(xz) = (f(x), ug(x)).
Write Lo ¢ for the Lipschitz constant of loss of the model.

Adversarial training is an effective method for improving robustness to adversarial
attacks. We show that adversarial training using the Fast Signed Gradient Method
(Goodfellow et al., 2014) can be interpreted as regularization by the average of
the 1-norm of the gradient of the loss over the data,

(/%) Jw= E [l(z)+el V()]

(xvy)ND
The choice of norm for the adversarial perturbation can lead to different interpre-
tations: using the 2-norm for adversarial training corresponds to

(/%) Jlwl= E [l(x)+e| V()]

.4J
(z,y)~D




Adversarial Training augmented with Lipschitz
Regularization

(7)) = B (l(x) + [ VE()|l2] + A max [[Va£(z)]|2.
(z,y)~D (z,y)€D

which we refer to as 2 — Lip (tulip). In practice, J* “* outperforms J* and J'.

For example on CIFAR-10, for a ResNeXt model, adversarial training alone reduced

adversarial training error by 29% (measured at adversarial ¢, distance' ¢ = 0.1)

over an undefended model. In contrast, J* with Lipschitz regularization (J* ")
reduces adversarial error by 42% over baseline. See Table 1. We trained with



AT + Tulip Results (2-norm)

Euclidean distance { ., distance
median % Err at median % Err at
Dataset defense method distance e =0.1 | distance ¢=1/16
JY (baseline) 0.09 53.98 | 1.02e—2 99.92
J (AT, FGSM) 0.18 24.63 | 2.12e—2 96.06

[FAR-1 ’

¢ R-10 J? (AT, /5) 0.30 13.54 3.45e—2 84.76
J?~LP & tanh 0.56 12.12 | 6.00e—2 51.64
JY (baseline) 4.74e—2 74.18 5.83e—3 99.61
J' (AT, FGSM) || 8.08e—2 56.34 | 1.07e—2 98.46
CLEAR-100 J? (AT, l5) 8.60le—2 D3.77 1.06e—2 98.03
J*~LP & tanh 0.136 42.58 | 1.6e—2 93.73

Significant improvement over state-of-the art results
come from augmenting AT with Lipschitz regularization



% misclassified

AT + Tulip Results (2-norm vs max-norm)

ResNeXt34, CIFAR-10 ResNext34, CIFAR-10
100 - 1 100-
30 - 80 -
60 - 60 -
40 - 40-
20 - 20 -
_—— =T | J2~HP & tanh
1073 102 1071 100 1073 102 101 100
!, adversarial distance Euclidian adversarial distance

2-Lip > Al-2 > AT-1 > baseline (for all noise levels on both datasets)



Other current areas of interest in Al
with
connhections to mathematics

We are looking for collaborators: these are possible new projects



Reinforcement Learning

® Related to dynamic Programming I

® Computationally intensive and unstable
Dynamic Programming

——{ Agent ————{ gent }—— and Optimal Control

/ \‘ DIMITRI P. BERTSEKAS
/ *
- . § l Environment Iﬂ— Environment |e—
N Ranggy g —
interp reter v | ‘ P I
\Stae \?.SJ / l o *
-V .
MO -
Reinforcement learning Related math: dynamic

| - | | | programming, Optimal
Reinforcement learning is an area of machine learning concerned with
how software agents ought to take actions in an environment so as to Control

maximize some notion of cumulative reward. Wikipedia
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Chatbot <

A chatbot is a computer program or an artificial

S peeCh reCOQ n |t|0 n < intelligence which conducts a conversation via auditory or

Field of study

textual methods. Such programs are often designed to

convincingly simulate how a human would behave as a
conversational partner, thereby passing the Turing test.

Speech recognition is the inter-disciplinary sub-field of Wikipedia
computational linguistics that develops methodologies and
technologies that enables the recognition and translation

of spoken language into text by computers. It is also 4 QUEEN
known as automatic speech recognition, computer speech \ e e
recognition or speech to text. Wikipedia ——

Russian ~ {0 &

noyeMy maTtemaTuka
MHTEpecHa

pochemu matematika interesna

C I
' S
pourquoi les maths \yord2vec -

sont-elles
. 4 Word2vec is a group of related models that are used to produce word
|nte ressa ntes embeddings. These models are shallow, two-layer neural networks that

are trained to reconstruct linguistic contexts of words. Wikipedia




Generative Networks (GANSs)

Wasserstein GANSs: optimal transportation (OT) mapping between random noise (Gaussians)
and target distribution of images

Noise ~ N(O,l)

(Generative
Model

""""

§ &
d

Related math: Optimal Tranportation algorlthms and convergence (Peyre Cuturi)



Computer Science > Computer Vision and Pattern Recognition

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
q u eeze e S and <0.5MB model size

Forrest N. landola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

Inference (evaluating the data and assigning a label) is costly

(typically 0.1 second on a power hungry high memory GPU) in terms of

* Memory (to store the weights)

+ Computation (multiplying the matrices times the vectors)

* Power (the energy Joules used by the chip)

+ Time

Research effort to make lean NN. How!?

»  Quantization: low bit number representation and arithmetic. (related
math : non-smooth optimization, when the RelLu are also quantized)

* Pruning: trim off the small weights, and retrain

+ Hyperparameter Optimization: train over multiple architectures and
params

Mostly engineering effort, but could be combined with more math on the

training.



