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Introduction
Deep Learning



Machine Learning vs. Deep Learning

- Typical Machine Learning models

better understood min J(z1, . . . >: :min |z — yjH2
mathematically, i=1 j=1

] K-means Cluster Energy
don’t scale as well to very

large problems.

Deep Learning
Very effective for large scale problems (e.g. identifying images).

Major open problem: understand generalization (why training
on a large data set works so well on real problems).



Deep Network

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Nested hierarchy of concepts, each defined in relation to simpler concepts
[Goodfellow Deep Learning]



Deep Learning Background
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* Deep Learning:

FIGURE 2. MNIST

* recognize face in picture, * ﬂ

- translate voice recording into text. u r &

» Training: optimizing the parameters of the
model, the weights, to best fit the data.

FIGURE 3. CIFAR-10



Derivation of Stochastic Gradient

from mini-batch
Motivating Example: k-means clustering, ( take k = 1)
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If the points are |ID, then by the Central Limit Theorem

V(@) — Vfs(z) ~ N (o ﬁ)



Training a DNN

» Tuning hyperparameters is labor
Intensive.

- Training is performed, simply and
effectively, by Stochastic Gradient
Descent (SDG).

- SGD is so effective, some popular
programming languages
[ TensorFlow] do not allow
modification.

Hyperparameter | Increases | Reason Caveats
capacity
when. . .
Number of hid-| increased | Increasing the number of | Increasing the number

den units

hidden units increases the
representational capacity
of the model.

of hidden units increases
both the time and memory
cost of essentially every op-
eration on the model.

Learning rate

tuned op-
timally

An improper learning rate,
whether too high or too
low, results in a model
with low effective capacity
due to optimization failure

Convolution ker-
nel width

increased

Increasing the kernel width
increases the number of pa-
rameters in the model

A wider kernel results in
a narrower output dimen-
sion, reducing model ca-
pacity unless you use im-
plicit zero padding to re-
duce this effect. Wider
kernels require more mem-
ory for parameter storage
and increase runtime, but
a narrower output reduces
memory cost.

Implicit Z€ero
padding

increased

Adding implicit zeros be-
fore convolution keeps the
representation size large

Increased time and mem-
ory cost of most opera-
tions.

Weight decay co-
efficient

decreased

Decreasing the weight de-
cay coefficient frees the
model parameters to be-
come larger

Dropout rate

decreased

Dropping units less often
gives the units more oppor-
tunities to “conspire” with
each other to fit the train-
ing set

Table 11.1: The effect of various hyperparameters on model capacity.

Tuning hyperparameters



Local Entropy:
from Spin Glasses
to Deep Networks
to Hamilton-Jacobi PDEs



Motivation: Local Entropy in Spin Glasses
seeking to improve generalization

Local Entropy N2
(statistical physics) Ey(0) = —log Z exp(—fE(0") — d(o,07))
oc{—1,+1}" spin

[Local Entropy ... in Constraint Satisfaction Problems, Baldassi 201 6]
[Unreasonable Effectiveness of Deep Learning, B.,...,Zecchina PNAS 2016]

Ising model
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Hamiltonian / upward / downward spins e T <

large correlations at complete disorder at
coupling strength, also called “disorder” low temperature high temperature
sum over all neighbors
O O
standard replica analysis of the only blue points = golf course-like landscape

Gibbs distribution




ENTROPY-SGD: BIASING GRADIENT DESCENT INTO
WIDE VALLEYS

Pratik Chaudhari!, Anna Choromanska?, Stefano Soatto!, Yann LeCun?-, Carlo Baldassi*,
Christian Borgs®, Jennifer Chayes®, Levent Sagun?, Riccardo Zecchina* J an 2017

« Similar formula to Local

Entropy in Spin Glasses, but B —f(x)
now in continuous variables. fr(x) = —log [G7 * € ]

» Algorithmic: can evaluate grad
f efficiently by an auxiliary Gy(x) =Ce 2
SGD dynamics.

* No PDEs in this paper!



Entropy-SGD improves
training and generalization

*  Entropy-SGD: a modification of SGD, which results in shorter
training time, and weights with better generalization.

2.0

* Training time is important: — Original landscape

large networks may take —— Negative local entropy : y = 0.001
15 ... Negative local entropy : 7 = 0.00005
weeks

» Generalization is very
important. Gains from
training are “free”
compared gains from

model/data —05

Figure 2: Local entropy concentrates on
wide valleys in the energy landscape.

X

non-robus

Xrobust




H|B-PDEs and Local-Entropy

[Deep Relaxation C. O. O.S. C.2017/05] started by identifying the
Local Entropy function as the solution of a Hamilton-Jacobi PDE.
This observation led to:

* Proof that the method trains faster
* Proof of wider minima (believed to be related to generalization).

and eventually, improvements to the algorithm.

f~(x) = u(x,y) where u is the solution of
1 1
ug(z,t) = —§|Vu\2 + iAu
u(z,0) = f(z)



Parallel SGD

EASGD [LeCun ... Elastic Averaging SGD] effective parallel training

Very recently new algorithm, PARLE [Chaudry 2017/07], giving best
results to date on CIFAR-10, CIFAR-100, SVHN

ESGD on each processor
Elastic forcing term between each particle.

* JKO gradient flow interpretation for PARLE:

/fy )p dx+ -~ //Ix I p(x) p(y) dx dy:



PDE interpretation of local entropy
and equation for the gradient



Hopf-Cole Transformation for H|B

Define
f}’(x) = u(x7 Y)

where Gy(x) is the heat kernel.

Ju 1
o~ 2V
u(x,0) =

Moreover

1

= ——log (GB‘IY* CXp (_ﬁf(x)));

B

hen u(x,?y) is the solution of

-1

I Au,

5 for0<t <y

X
Vu(x,t) = /n yTpl (dy; x)

B

P s 3) =2; exp (~B10) - 5, be—>F )

This is well-known result, see [Evans PDE]



Hopf-Cole Proof

Proof. Define u(x,t) = —B~'logv(x,t). So v =exp(—PBu) solves the heat equa-
tion
Vi — B_IAV

with initial data v(x,0) = exp(—Bf(x)). Taking partial derivatives gives

Ve =—B v u, Vv=—-8 v Vu, Av:—ﬁvAu—l—ﬁzv |Vu|2.

Combining these expressions results in (viscous-HJ).
Differentiating v(x,#) = exp(—Bu(x,t)) gives up to positive constants which
can be absorbed into the density,

Vu(x,1) = C Vy (G, + e /W) =CV, / G, (y) e B/ gy



Local Entropy:
Visualization



Stochastic Optimal Control Interpretation

Forward-backward equations.

ou 1 5 1
pr=—V '(VMP>+AP7
u( 7T):V(x)7



Visualization of Improvement:
dimension |, PDE simulation.

Initial density and potential
T T T

final Density and V; SGD
T T T

4.5

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Soln of HJ-V-Lap.t=0.5
T T

w
N
-
o
-h
N
w

FIGURE 1. Initial density, final density SGD, final density CSGD,
Solution of HJB Forward-backward equations.



Local Entropy is Regularization using Viscous Hamilton-
Jacobi PDE

— f(%)

Uyiscous HJ (%, T)

Unon-viscous HJ (x,T)

L

True solution in one dimension. (Cartoon in high dimensions, because algorithm only works

for shorter times.)



Proof of Improvement
for Modified dynamics



Modified System

Consider the following controlled SDE
dx(s) = =V f(x(s)) ds— o(s) ds+ B2 dW(s), fort<s<T,

¢C), a() =E V) + 5 [ lalo) as|.

Using stochastic control theory [Fleming]
obtain HJB equation for the value function ...

[3—1
2

pi==V - ((Vu+V£p)+Ap,

1
—uy =—Vf - Vu— Vul* A

Au,

for0< s< T

u(x,T)=V(x),  p(x,0)=po(x)
Note: the zero control corresponds to SGD



Expected Improvement Theorem

Theorem 11. Let xc0q(s) and xsgq(s) be solutions of (CSGD) and (SGD),
respectively, with the same initial data xcsgd(0) = Xxsd(0) = x0. Fix a timet >0
and a terminal function, V(x). Then

1

E [V(xcsgd(t))} <K [V(xsgd(t))] ) E {/Ot ‘a(xcsgd(s)as)‘z ds| .

The optimal control is given by o (x,t) = Vu(x,t), where u(x,t) is the solution
of (HJB) along with terminal data u(x,T) = V(x).
Note this is the modified (H|B) from the previous slide.

Alternately, if we go back to the original H]B, we have the implicit gradient
descent interpretation.

Or, same theorem, comparing LE-SGD to random walk (no gradient)



Solving PDEs in high dimensions!?

not quite, just need gradient at one point.

Will integration work?
no! curse of dimensionality.

Require a method which overcomes the

curse of dimensionality:
Langevin Markov-Chain Monte Carlo (MCMC)



Langevin MCMC

Want to compute:

| —X o

R "

Langevin MCMC:

sample the measure using a
dynamical system, and average
expression against the measure by

fop 4 1
f fl?v“ oo sty by ezt iy a time average, using ergodicity.

Find dynamics with invariant measure p(y) :

dy(s) = —(x — y)ds + dW,

take expectation of f via dynamics ,w il T

/f(y)p(y)dy - .’111—{2(, % /0 f(y(s))ds '\l



Stochastic Differential Equations
and Fokker Planck PDE

dx(t) ==V f(x(t)) dt +1/2B~1 dW(2);

Lo=-Vf -Vo+B A9,

du

Ez‘iﬁu,

u(x,t)
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Background: Homogenization of SDEs

Pavliotis and Stuart (2008, Chap. 10, 17)

dx(s) = h(x, y) ds
- Two scale dynamics 1 1

dy(s) = - — g(x, y) ds \/E W (s);

» Unique invariant measure of

. k 0o
the fast dynamics Zy p(y; x) =0;
* In the limit, obtain —N T
homogenized dynamics dx(s) - h(x) ds
- given by averaging against the —
Invariant measure h x y dy ’ )
- Equivalent by ergodicity to a — lim — / h(x,y(s

time average. I'—oo



Langevin MCMC for the Gradient

Consider the following auxiliary system of SDEs

dx(s)=—y" (x—y) ds

—1/2 Entropy-SGD
iy0) =1 [r0)+ L 00 ass B aweg. R

Theorem 4. As € — 0, the system (Entropy-SGD) converges to the homoge-
nized dynamics given by

dX(s) =—Vfy(X) ds

Moreover, —V fy(x) = —y~1 (x— (y)) where

o) = [ v oty X)= Jim = [ 5(s



Proof of MCMC for the Gradient

Proof. Write ,
H * p— —_— - 2
(5.3:7) = ) + 5 le—

The Fokker-Planck equation for the density of y(s) is given by

~1
pr=%25 p=Vy-(Vy Hp)- [32 Ay p;

The invariant measure for this Fokker-Planck equation is thus

P (y; x) =Z 'exp(—BH(x,y;7))

which agrees with the expression for the gradient from the Hopf-Cole formula.
The conclusion then follows homogenization of SDEs

X)=-7 / y) 1 (v X)



Exponential Convergence in VWasserstein
for Fokker-Planck
In convex case

Fokker Planck is Gradient descent in Wasserstein ot

1(p)= [ ) pdx+B" [ p logp ax

The convergence rate for a A-convex function f(x)
(meaning D? f(z) > AI) is exponential with rate .

sz (p(xat)a pw) dez (p(x70)7 poo) e—lt'

Langevin dynamics, the A-convexity of f is improved by a factor of 1/+.

So the MCMC step is exponentially convergent, for small
enough values of time. This explains why the algorithm
converges with a relatively small (100) time steps.
(Accurate enough with 25 steps).



Algorithm and Results in Deep Networks



Algorithm for Local Entropy

» Scoping: for the control problem. v(t)
Gamma decreases linearly with
time. (at leads near final time).

»  QOuter Loop: Implicit Gradient

descent

Langevin MCMC

Lrk+1 — Lk

v(t)

* Inner Loop: Estimate gradient by

Va(0) = |

1 —1

—Vu(zg,v(t))




Numerical Results

Visualization of Improvement in training loss (left)
Improve in Validation Error (right)

dimension = |.67 million

20
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0 50 100 150 200 0 50 100 150 200
Epochs x L Epochs x L

(A) All-CNN: Training loss (B) All-CNN: Validation error



Numerical Results

Model

Entropy-SGD

HEAT

HJ

SGD

mnistfc
LeNet
All-CNN

1.08+0.02 @ 120
0.5+0.01 @ 80
7.96+0.05 @ 160

1.13+0.02 @ 200
0.59+0.02 @ 75
9.04+0.04 @ 150

1.17+0.04 @ 200
05+£0.01 @70
7.89+0.07 @ 145

1.10£0.01 @ 194
0.5+£0.02 @ 67
7.94+0.06 @ 195

TABLE 1. Summary of experimental results: Validation error (%) @ Effective epochs

E-SGD: previous algorithm,
H] improved algorithm

SGD well tuned, i.e. best results previously obtained.

H] improves both the training time and the Validation error.

These fractions of a percent are significant.



top1 error (%)

PARLE-SGD

p)= [ fwp dr+ 5 [ [le=3p() py) dx dy;

15 WRN-28-10: CIFAR-10 45 - WRN-28-10: CIFAR-100
—— Parle (n=3) —— Parle (n=3)
— Parle (n=8) — Parle (n=8)
—— Elastic-SGD (n=3) —— Elastic-SGD (n=3)
12 1 —— Entropy-SGD —— Entropy-SGD
SGD 35 - — SGD
S
9 - = 4
2 \
e
25 -
6 - 4.38 v 21.36 18.85
\ 429 4.23 19.05
3.77 3.24 S 17.76  17.64
3 I I 1 15 | | I
0 100 200 300 400 0 100 200 300 400
wall-clock time (min) wall-clock time (min)
(A) (B)

FIGURE 3. Validation error of WRN-28-10 on CIFAR-10 (Fig. 3a) and CIFAR-100 (Fig. 3b)



Improvements using
PDE optimized learning rate

0.66 -

0.64 -

0.62 -

0.60 -

(%)

MNIST

= 0.58 -
Ll
0.56 -
0.54 -

0.52 -

—8— Optimized learning rate
Hand tuned learning rate

2 4 6
epoch

with Chris Finlay PhD student McGill



Optimization:
Acceleration methods
Deterministic and Stochastic

H]B gradient as implicit gradient descent

(Most of our analysis is for continuous time
in practice, take discrete time steps)



Accelerated Gradient Methods
for (non-strictly) convex functions

Gradient descent convergence rate: O(1/n)

Starting Point

Optimum

Solution

o =V f(@)

Momentum /Nesterov convergence rate: O(1/n?)

Starting Point

Optimum

Solution

' = -V f(z) — ax’



SGD versus Entropy-SGD

dz(t) = -V f(z(t))dt + dW, Thtl — Tk _ —Vu(zy, T)

Stochastic Gradient descent convergence rate: O(1/4/n) T

50 steps of SGD 50 outer steps LESGD,
(25 steps in each inner loop)

figures: PhD student Bilal Abbasi



Implicit/Proximal gradient descent

Implicit methods: more stable, allow longer time step.
Not practical: requires a (local) minimization/equation solve at each step.

. 1
Tk+1 € argmin {f(:c) + le - $k|2}

Advantages: stable, guaranteed descent, even in nonconvex case

f(zie) < f(r) =l — il

Method is equivalent to backward Euler method for gradient descent.

P  forr)

Gradient can be evaluated from the solution of Hamilton-Jacobi PDE

(

u(e,r) = min{ 7) + 71y - o | w=—1VuP, u(z,0)= f(z)

Y

The corresponding update is exactly

L+1 — Tk
T

= —Vu(zy,7) S0 PDE solution gives a formula for implicit GD




Folkker-Planck with nonconvex Potentials

Challenges, and insights from
Computational Molecular Dynamics



Metastability in one dimension:
Exponential time to discover nearby minima

W (x) 1.5
1.0
0.5

0.0-
05
x 00 2000 4000 6000 8000 10000

-1.5

dX, = —W'(X,) dt + vV 2edW,

2m
Bl =l e e

Ref: [Bovier, Metastability] for [Kramer’s 1940] formula

xp[ (W (z*) — Ww))/e].



https://www.youtube.com/watch?v=Fot3m7kyLn4

Metastability in higher dimensions

Energetic

Barrier

climb mountain pass
between valleys

2000 4000 6000 8000 10000

lterations

(b)

Entropic
Barrier

lakes connected
by narrow rivers

4000 6000 8000 10000

lterations

() (d)

Figure 1.1. (a,c) Level sets of the two-dimensional potentials. (b, d) Time evolution
of the z-coordinate of the stochastic process solution to overdamped Langevin
dynamics (1.8) in these potentials. (a,b) Energetic barrier (8 = 4), (c,d) entropic
barrier (8 = 10).

ref: [PDEs ... in Molecular Dynamics, Lelievre and Stolz]



Metastability and widening in DNNs

Entropic Barriers are believed to be
significant in DNNs.

’MCX}{:)=0
Conjecture: Local Entropy
improves the entropic barriers, by
“widening” local minima.
PDE proof of second conjecture.
using standard semi-concavity Thm: HJB widens the narrow rivers

estimates.

- Suppose u(x,t) is the solution of (viscous-HJ), and let B~ > 0. If

Cy = Sup Uy (x,0) and Cpyp = sup Au(x,0),
X

X

1 1
sup u x,t) < : and sup Au(x,t) <
xp xexe (X5 ) Ck_1 ny xp (x,2) < Lap np /n




Algorithm Test: K-Means

work in progress with:
S. Osher, Mihn Pham, Penghang Yin, UCLA



Algorithm Applied to k-means clustering

min f(x1,...,TK) =

- Standard algorithm, Lloyd’s/EM
can get stuck in a local
minimum.

* Our algorithm, in comparable
test case, finds global minimurn

- Example on Right:

* 4 means, 3 clusters
»  Optimal solution puts two
means in the double cluster

K N
. 2
S5 min [z — g

i=1 j=1
10

'S v

o < data points

8 3.0 4 ESGD

B EM
6 > i
4t ¢ 0

& "~
.....




Algorithm Applied to k-means clustering

1. ESGD vs. EM
100 trials, K =8 (ground truth), ESGD batch size = 1000

Method | _Min | Max__| Mean | Variance _| % global min found _

mb-EM  15.6800 27.2828 20.0203 6.0030 10%
ESGD 15.6808 15.6808 15.6808 1.49x1071° 100%

2. ESGD vs. mini-batch EM (mb-EM)
100 trials, K = 8 (ground truth), both batch size = 500

Method |_Min_| Max__| Mean | Variance | % global min found_

mb-EM  15.9148 18.1848 16.4009 0.7646 77%
ESGD 15.6816 15.6821 15.6820 1.18x10° 100%



Conclusions

» Discovered a H|B-PDE connection with Entropy-SGD
algorithm, which has very good performance in Deep
Networks.

- Exploited this connection to better understand the
algorithm, giving proofs to empirical results about
training.

» Improvements to algorithm using PDE insights and
numerical PDE ideas.



