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Introduction
Deep Learning



Machine Learning vs. Deep Learning

• Deep Learning

•  Very effective for large scale problems (e.g. identifying images).  

• Major open problem: understand generalization (why training 
on a large data set works so well on real problems).

• Typical Machine Learning models

• better understood 
mathematically, 

• don’t scale as well to very 
large problems. 



Deep Network

Nested hierarchy of concepts,  each defined in relation to simpler concepts 
[Goodfellow Deep Learning]



Deep Learning Background

• Deep Learning: 

• recognize face in picture, 

• translate voice recording into text.

• Training: optimizing the parameters of the 
model, the weights, to best fit the data.



Derivation of Stochastic Gradient 
from mini-batch

Motivating Example: k-means clustering,  ( take k = 1)

If the points are IID, then by the Central Limit Theorem

 mini-batch: randomly choose a smaller set I of points from the data.

Cost is N

Cost is |I|



Training a DNN

• Tuning hyperparameters is labor 
intensive.  

• Training is performed, simply and 
effectively, by Stochastic Gradient 
Descent (SDG).

• SGD is so effective, some popular 
programming languages 
[TensorFlow] do not allow 
modification.

Tuning hyperparameters



Local Entropy:
from Spin Glasses
to Deep Networks

to Hamilton-Jacobi PDEs



Motivation: Local Entropy in Spin Glasses
seeking to improve generalization

Local Entropy 
(statistical physics)

[Local Entropy … in Constraint Satisfaction Problems, Baldassi 2016]
[Unreasonable Effectiveness of Deep Learning, B.,…,Zecchina PNAS 2016]



• Similar formula to Local 
Entropy in Spin Glasses, but 
now in continuous variables. 

• Algorithmic:  can evaluate grad 
f efficiently by an auxiliary 
SGD dynamics.

• No PDEs in this paper!

Jan 2017



Entropy-SGD improves 
training and generalization

• Entropy-SGD:  a modification of SGD, which results in shorter 
training time, and weights with better generalization.

• Training time is important: 
large networks may take 
weeks

• Generalization is very 
important.  Gains from 
training are “free” 
compared gains from 
model/data



HJB-PDEs and Local-Entropy

[Deep Relaxation C. O. O. S. C. 2017/05] started by identifying the 
Local Entropy function as the solution of a Hamilton-Jacobi PDE.  
This observation led to:

• Proof that the method trains faster 

• Proof of wider minima (believed to be related to generalization).

and eventually, improvements to the algorithm.



Parallel SGD

EASGD [LeCun … Elastic Averaging SGD] effective parallel training 

Very recently new algorithm, PARLE [Chaudry 2017/07], giving best 
results to date on CIFAR-10, CIFAR-100, SVHN

• ESGD on each processor

• Elastic forcing term between each particle. 

• JKO gradient flow interpretation for PARLE:



PDE interpretation of local entropy
and equation for the gradient



Hopf-Cole Transformation for HJB

This is well-known result, see [Evans PDE]



Hopf-Cole Proof



Local Entropy:
Visualization



Stochastic Optimal Control Interpretation



Visualization of Improvement: 
dimension 1, PDE simulation.



Local Entropy is Regularization using Viscous Hamilton-
Jacobi PDE

• True solution in one dimension. (Cartoon in high dimensions, because algorithm only works 
for shorter times.)



Proof of Improvement
for Modified dynamics



Modified System

Note:  the zero control corresponds to SGD

Using stochastic control theory [Fleming] 
obtain HJB equation for the value function …



Expected Improvement Theorem

• Note this is the modified (HJB) from the previous slide.

• Alternately, if we go back to the original HJB, we have the implicit gradient 
descent interpretation.  

• Or, same theorem, comparing LE-SGD to random walk (no gradient)



Solving PDEs in high dimensions?
not quite, just need gradient at one point.

Will integration work?
no! curse of dimensionality.

Require a method which overcomes the 
curse of dimensionality:

Langevin Markov-Chain Monte Carlo (MCMC)



Langevin MCMC

Langevin MCMC: 
sample the measure using a 
dynamical system, and average 
expression against the measure by 
a time average, using ergodicity.

Want to compute:



Stochastic Differential Equations
and Fokker Planck PDE



Background: Homogenization of SDEs

• Two scale dynamics

• Unique invariant measure of 
the fast dynamics

• In the limit, obtain 
homogenized dynamics

• given by averaging against the 
invariant measure

• Equivalent by ergodicity to a 
time average.



Langevin MCMC for the Gradient



Proof of MCMC for the Gradient



Exponential Convergence in Wasserstein 
for Fokker-Planck

in convex case

So the MCMC step is exponentially convergent, for small 
enough values of time. This explains why the algorithm 
converges with a relatively small (100) time steps.  
(Accurate enough with 25 steps).



Algorithm and Results in Deep Networks



Algorithm for Local Entropy

• Scoping: for the control problem.  
Gamma decreases linearly with 
time. (at leads near final time).

• Outer Loop: Implicit Gradient 
descent

• Inner Loop: Estimate gradient by 
Langevin MCMC



Numerical Results

Visualization of Improvement in training loss (left)
Improve in Validation Error (right)

dimension = 1.67 million



Numerical Results

E-SGD: previous algorithm,
HJ improved algorithm

SGD well tuned, i.e. best results previously obtained.
HJ improves both the training time and the Validation error.  

These fractions of a percent are significant.



PARLE-SGD



Improvements using 
PDE optimized learning rate

MNIST

with Chris Finlay PhD student McGill



Optimization:
Acceleration methods 

Deterministic and Stochastic

HJB gradient as implicit gradient descent

(Most of our analysis is for continuous time 
in practice, take discrete time steps)



Accelerated Gradient Methods 
for (non-strictly) convex functions



SGD versus Entropy-SGD

figures: PhD student Bilal Abbasi

50 steps of SGD 50 outer steps LESGD, 
(25 steps in each inner loop)



Implicit/Proximal gradient descent

Implicit methods: more stable, allow longer time step.
Not practical: requires a (local) minimization/equation solve at each step.

Advantages: stable, guaranteed descent, even in nonconvex case

Method is equivalent to backward Euler method for gradient descent.

Gradient can be evaluated from the solution of Hamilton-Jacobi PDE

The corresponding update is exactly

So PDE solution gives a formula for implicit GD



Fokker-Planck with nonconvex Potentials
Challenges, and insights from 

Computational Molecular Dynamics



Metastability in one dimension: 
Exponential time to discover nearby minima

Video

Ref: [Bovier, Metastability] for [Kramer’s 1940] formula

https://www.youtube.com/watch?v=Fot3m7kyLn4


Metastability in higher dimensions

Energetic 
Barrier

climb mountain pass 
between valleys

Entropic 
Barrier 

lakes connected 
by narrow rivers

ref: [PDEs … in Molecular Dynamics, Lelievre and Stolz]



Metastability and widening in DNNs
Entropic Barriers are believed to be 
significant in DNNs.

• Conjecture: Local Entropy 
improves the entropic barriers, by 
“widening” local minima. 

• PDE proof of second conjecture. 
using standard semi-concavity 
estimates.

Thm: HJB widens the narrow rivers



Algorithm Test: K-Means

work in progress with: 
S. Osher, Mihn Pham, Penghang Yin, UCLA



Algorithm Applied to k-means clustering

• Standard algorithm, Lloyd’s/EM 
can get stuck in a local 
minimum.  

• Our algorithm, in comparable 
test case, finds global minimum

• Example on Right: 
• 4 means, 3 clusters  
• Optimal solution puts two 

means in the double cluster.



Algorithm Applied to k-means clustering

1.				ESGD	vs.	EM		
							100	trials,	K	=	8	(ground	truth),	ESGD	batch	size	=	1000		
	
	
	
2.			ESGD	vs.	mini-batch	EM	(mb-EM)	
						100	trials,	K	=	8	(ground	truth),	both	batch	size	=	500	
	

Method� 				Min� 		Max � Mean� Variance � %	global	min	found�

mb-EM � 15.6800� 27.2828� 20.0203� 6.0030� 															10%�

ESGD� 15.6808� 15.6808� 15.6808� 1.49x10-10� 														100%�

	 �
								

Method� 			Min� 		Max � 	Mean� 	Variance � 	%		global	min	found�

mb-EM � 15.9148� 18.1848� 16.4009� 0.7646� 																77%�

ESGD� 15.6816� 15.6821� 15.6820� 1.18x10-9� 															100%�



• Discovered a HJB-PDE connection with Entropy-SGD 
algorithm, which has very good performance in Deep 
Networks.

• Exploited this connection to better understand the 
algorithm, giving proofs to empirical results about 
training.  

• Improvements to algorithm using PDE insights and 
numerical PDE ideas.

Conclusions


