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e Artificial Intelligence is loosely
defined as intelligence
exhibited by machines

e Operationally: R&D in CS
academic sub-disciplines:
Computer Vision, Natural

Language Processing (NLP), -
Robotics, etc 4 ‘0" AlphaGo  Lee Sedol

AlphaGo uses DL to beat world champion at Go



Artificial General Intelligence (AGI)

e Al : specific tasks,

e AGI : general cognitive
abllities.

e AGI is a small research
area within Al: build
machines that can
successfully perform any
task that a human might do

e So far, no progress on AGI.




Machine Learning (ML) vs
Deep Learning (DL)

Machine Learning (ML) has
been around for some time. ha Shalev-Shwartz and Shai Ben-Davd
UNDERSTANDING

Deep Learning is newer MACH'NE
branch of ML which uses | EARNING

Deep Neural networks.

ML has theory: error PRI, 4
estimates and convergence NG %S &1  Machine Learning
pr O Of S o A Probabilistic Perspective

DL less theory. But DL can
effectively solve much bigger
problems



Deep Learning: solve big problems using GPUs.

® |mageNet: Total number of classes: 21841

® Jotal number of images: 14,197,122
® Size: about 200 Gi

Facebook used 256
GPUs, working in
parallel, to train
ImageNet.

Still an academic dataset.
Total number of images
on Facebook is much
larger




Challenges for deep learning

Self-Driving Uber Hits, Kills
“It is not clear that the existing Al  Pedestrian in Arizona

paradigm is immediately amenable i i s v T v e e ene
to any sort of software engineering @ o s vz

validation and verification. Thisisa ** ™" %

serious issue, and is a potential ' -
roadblock to DoD’s use of these
modern Al systems, especially
when considering the liability and

accountability of using Al”

JASON report




Mary Shaw’s evolution of
software engineering discipline

Science

Production Professional engineering

Commercial

* Virtuosos and talented * Skilled craftsmen * Educated professionals
ama?gurs * Established procedure * Analysis and theory
* Intuition and brute force * Pragmatic refinement * Progress relies on science
* Haphazard progress » Training in mechanics * Educated professional class
* Casual transmission « Economic concern for cost  * Enabling new applications
e Extravagant use of and supply of materials through analysis
available materials e Manufacture for sale * Market segmentation by
» Manufacture for use product variety

rather than sale

Better theory: improves reliability and discipline evolves



Al History

e “Al” coined in 1956. Perceptrons 1960 implied machines could learn from
data

e Decline in 1969 - perceptron not a universal function approximator,
e 1980 resurgence in Al “expert systems”. Petered out
e 1990s academic Al in doldrums

e |[mproved computers led, in 1997 to IBM Deep Blue beats champion Gary
Kasparov in chess.

Chess, once believed to require human intelligence, fell to a special-
purpose very fast algorithm.



2010: Deep Learning Revolution

e Neural Networks have been

around for half a century.
Popular in the 1990°s for
solving simple tasks.

Starting around 2010, new
hardware, Graphics Processor
Units (GPU)s, became
available, which allowed for
much larger, and deeper
networks.

large labelled data sets become
available, allowed for training.
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2012-2015: ImageNet won by AlexNet

* The large data set ImageNet was
available in 2005.

e |n 2012 Alexnet, trained on
GPUs, won the 2012 ImageNet
competition, with an error of
15.3%, more that 10% better
than the runner up. Canadian (U
Toronto) team: Alex Krizhevsky,
Geoffrey Hinton, and llya
Sutskever.

e Between 2011 and 2015, error
rate for image captioning by
computer fell from 25% to 3%,
better than accepted human
figure of 5%

more than 95% prediction correct
caption (green column)

© Describes with minorerrors ~ Somewhat related to the

"~ Aperson ridinga
motorcycle on a dirt road.

Two hockey players are fighting A little girl in a pink h
blowing bubbles.

A group of young people
playing a game of frisbee. over the puck.

A herd of elephants walking A close up of a cat laying

across a drv arass field. on a couch.

A red motorcycle parkes
cide aof the road


https://en.wikipedia.org/wiki/Geoffrey_Hinton
https://en.wikipedia.org/wiki/Ilya_Sutskever
https://en.wikipedia.org/wiki/Ilya_Sutskever

New Al Applications
and connections to Mathematics



Reinforcement Learning

® Related to dynamic Programming I

® Computationally intensive and unstable
Dynamic Programming

——{ Agent ————{ gent }—— and Optimal Control
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Reinforcement learning Related math: dynamic

| - | | | programming, Optimal
Reinforcement learning is an area of machine learning concerned with
how software agents ought to take actions in an environment so as to Control

maximize some notion of cumulative reward. Wikipedia
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Chatbot <

A chatbot is a computer program or an artificial

S peeCh reCOQ n |t|0 n < intelligence which conducts a conversation via auditory or

Field of study

textual methods. Such programs are often designed to

convincingly simulate how a human would behave as a
conversational partner, thereby passing the Turing test.

Speech recognition is the inter-disciplinary sub-field of Wikipedia
computational linguistics that develops methodologies and
technologies that enables the recognition and translation

of spoken language into text by computers. It is also 4 QUEEN
known as automatic speech recognition, computer speech \ e e
recognition or speech to text. Wikipedia ——

Russian ~ {0 &

noyeMy maTtemaTuka
MHTEpecHa

pochemu matematika interesna

C I
' S
pourquoi les maths \yord2vec -

sont-elles
. 4 Word2vec is a group of related models that are used to produce word
|nte ressa ntes embeddings. These models are shallow, two-layer neural networks that

are trained to reconstruct linguistic contexts of words. Wikipedia




Generative Networks (GANSs)

Wasserstein GANSs: optimal transportation (OT) mapping between random noise (Gaussians)
and target distribution of images

Noise ~ N(O,l)

(Generative
Model

""""

§ &
d

Related math: Optimal Tranportation algorlthms and convergence (Peyre Cuturi)



Computer Science > Computer Vision and Pattern Recognition

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
q u eeze e S and <0.5MB model size

Forrest N. landola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

Inference (evaluating the data and assigning a label) is costly

(typically 0.1 second on a power hungry high memory GPU) in terms of

* Memory (to store the weights)

+ Computation (multiplying the matrices times the vectors)

* Power (the energy Joules used by the chip)

+ Time

Research effort to make lean NN. How!?

»  Quantization: low bit number representation and arithmetic. (related
math : non-smooth optimization, when the RelLu are also quantized)

* Pruning: trim off the small weights, and retrain

+ Hyperparameter Optimization: train over multiple architectures and
params

Mostly engineering effort, but could be combined with more math on the

training.



Adversarial Examples

gradient vector from a particular
panda to the nearest gibbon boundary

.
%

x
“panda” “nematOde” “gibbon”
57.7% confidence 8 2% confidence 99.3 % confidence

Goodfellow, Explaining and Harnessing Adversarial Examples, 2015



ML theory for generalization

» Traditional ML theory (in math language)
» the class of functions used for approximation has

some regularity built in
» the function to be approximated is regular
» obtain a convergence rate for approximate based on

number of samples

ML theory breaks down for DNNs

1

Zhang (2016) “Understanding deep learning requires rethinking

generalization” shows that ML theory does not apply o

Learning networks. Two things to make clear to the reader (1) We don’t know o}

how Deep Learning works and (2) when it makes a prediction, we don’t have

an explanation why it arrived at that prediction. That is just scratching the

Bengio “Dark Art”. Popular press discusses lack of understanding

UNDERSTANDING

MACHINE
LEARNING

-0.5F




Training and generalization

Generalization: training error is a good estimate of
expected error on unseen images drawn from the same
distribution.

DNNs generalize well in practise, but, in contrast to
traditional ML techniques, there is no proof.

1.1. Related work and applications. Generalization bounds have been obtained
previously by using the Lipschitz constant of a network (Bartlett, 1997), as well
as by using more general stability results (Bousquet & Elisseeff, 2002). More re-
cently, (Bartlett et al. , 2017) proposed the Lipschitz constant of the network as
a candidate measure for the Rademacher complexity, which a measure of general-
ization (Shalev-Shwartz & Ben-David, 2014, Chapter 26). However, our analysis
Is more direct and self-contained, and unlike other recent contributions such as
(Hardt et al. , 2015), it does not depend on the training method.



Our approach: PDE and Variational

Optimization : training of the network: large scale, nonconvex optimization.
» First order methods (too big for anything else).
» Stochastic gradient descent (too big for full gradients)

» Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari,Adam M. Oberman, Stanley Osher, Stefano Soatto, Guillame
Carlier 2017

Variational Problems and regularization :improve the quality of solutions:
better robustness to adversarial training, better predictions (generalization)

» Lipschitz regularized Deep Neural Networks converge and generalize O. and |eff Calder;
2018

- Improved robustness to adversarial examples using Lipschitz regularization of the
loss Chris Finlay, O., Bilal Abbasi;



Our theory resolves the Zhang example

We give a proof of generalization that gets around this
obstruction, by adding a regularization term

It resolves the problem posed by Zhang, by showing that random
perturbations affect the Lipschitz constant of the data.
Moreover, the method could correct errors in the labels.
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Approaches to regularization

A. Machine Learning: learn data using an min K, 0(f(z;w), y(z))
appropriate (smooth) parameterized class of %
functions

B. Algorithmic: use an algorithm which selects kel k
the best solution (e.g. Stochastic Gradient W = wt A+ e Vinpl(. - w)

Descent as a regularizer, adversarial training)
C. Inverse problems: allow for a broad class of
functions, but modify the loss to choose the

right one min B, 0(f (z; w), y(x)) + M| VeS|l e (x,p)

w




Convergence result:
Data distribution and loss function

Definition 1.1. Assume the data is normalized so that the data space is X =
0,1]¢. Write D,, = x4....,x, for the training data. Assume D, is a sequence
of 1.i.d. random variables on X sampled from the probability distribution p. We
consider the classification problem with m labels which are imbedded into the

probability simplex, the label space, ¥ C R™. Write uy : X — Y for the map
from data to label space, so that y; = ug(z;).

Assumption 2.3 (Loss function). The function /: Y x Y — R is a loss function

if it satisfies (i) £ > 0, (i) £(y1,y2) = 0 if and only if y; = ys, and (iii) £ is strictly
convex in yj.

Example 2.4 (R™ with L? loss). Set Y = R™, and let each label be a basis vector.
Set ((y1,vy2) = ||y1 — y2||5 to be the L? loss.

Example 2.5 (Classification). In classification problems, the output of the network
is a probability vector on the labels. Thus Y = A, the p-dimensional probability
simplex, and each label is mapped to a basis vector. The cross-entropy loss is

given by /55 (y, z) = — Y " 2z log(y;/z). For labels, (%*(y.er) = —log(y)-



Lipschitz Regularization of DNNs

Augment the expected loss function on the data with a Lipschitz
regularization term

JLipn f] = C(f(x),up(z))| + Amax(Lip(f) — Lo, 0)

Dll

;

(z,y)

where Lo is Lipschitz constant of the data, and n is number of data points.
*Lambda = 0 corresponds to the usual unregularized problem.

Theory [Bartlett]:

- if you can control the Lipschitz constant, then generalization follows.
(but no indication how to do it).

Recent work by several authors attempted to control the

Lipschitz constant of network, but the implementation was not effective.

Our work: (i) adding Lipschitz regularization term leads to convergence proof
(ii) effective implementation of Lipschitz regularization in practice.



Convergence: two cases

Clean Labels:

* relevant in benchmark data sets and Noisy labels:
some applications, - relevant in applications,

- simpler proof, since the functional - familiar setting for calculus of
has value zero. variations

* regime of perfect data interpolation
possible with DNNs
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Convergence is on the data manifold

The convergence is on the data manifold,

(the support of the data probability density function).
Off the manifold, sequences may not converge,
but the functions are still Lipschitz.

T T T T T




Convergence theorem for Noisy Labels

Theorem 2.11. Suppose that infrqp > 0, £ :Y xY — R is Lipschitz, and let
w* € W (X, Y) be any minimizer of (5). Then with probability one

(7) Un — " uniformly on M as n — oo,

where u, is any sequence of minimizers of (1). Furthermore, every uniformly
convergent subsequence of u,, converges on X to a minimizer of (5).

The proof of Theorem 2.11 requires a preliminary Lemma. Let Hy (X;Y) denote
the collection of L-Lipschitz functions w : X — Y.

Lemma 2.12. Suppose that inf g p > 0, and dim(M) = mgy. Then for any t > 0

1

t ].Og(n) ) mo+2

n

(8) sup %Zu/(x,) — / wpdVol(x)] < CL (
i=1 M

weH (X;Y)

holds with probability at least 1 — 2t mo 12— (et=1)

The estimate (8) is called a discrepancy result (Talagrand, 2006; Gyorfi et al. ,
2006), and is a uniform version of concentration inequalities. We include a simple
proof in Section 3.2.



Proof of convergence: Clean Labels

Theorem 2.7 (Convergence for clean labels). Suppose that Lip|ug| < Lo and

inf,c v p(x) > 0. If f,, € WH(X;Y) is any sequence of minimizers of
Jhn|f] [0 (f (@), uo())] + Amax(Lip(f) — Lo, 0)

|
;

then for any t > 0

. tlog(n)\ "™
[t — fulleriyy < CLe ( )

holds with probability at least 1 — C't 'n=(<t=1),

- Rate of convergence, on the data manifold, of the minimizers.

 The rate depends on, n, the number of data points sampled and, m,
the number of labels.

- Probabilistic bound, where obtain a given error with high
probability

- with uniform sampling the log term and the probability goes away



Proof

Lemma 2.9. Suppose that infrq p > 0. Then for any t > (

tlog(n) ) t/m

7”/

ld — ol e (pmix) = C (
with probability at least 1 — Ct~tn~(<t=1),

We now give the proof of Theorem 2.7.

Proof of Theorem 2.7. Since J,|u,| = J,|ug] = 0, we must have Lip|u,| < Ly
and ug(x;) = u,(x;) for all 1 <i < n. Then for any z € X we have

up(z) — uo(on(2)) + uo(on(x)) — un(on(x)) + un(on(x)) — un )|y
uo(z) — uo(0n(2))|ly + |[un(on(z)) — un(x)ly
2L0||x — op(x)|| x -

H U ('1:) — Up (l) HY

IAIA

Therefore, we deduce

o~ tnll =it < 2Lallld — 00l aay

The proof is completed by invoking Lemma 2.9.




Generalization follows

As an immediate corollary, we can prove that the generalization loss converges
to zero, and so we obtain perfect generalization.

Corollary 2.8. Assume that for some q > 1 the loss { satisfies

(6) Uy, y0) < Clly —wolly for all yy,y €Y.

Then under the assumptions of Theorem 2.7

2 loc(n q/m
Luy, p] < CL{ ( OO(”))

n
holds with probability at least 1 — C't~1n (1),

Proof. By (6), we can bound the generalization loss as follows

Lluy,, p| = / y Uy (), ug(x)) dVol(x) < CVol(M)| u, — 'lLOH%OO('M;y)-

The proof is completed by invoking Theorem 2.7.




Regularization improves Adversarial Robustness

gradient vector from a particular
panda to the nearest gibbon boundary

£

“panda” “nematode” “gibbon”
57.7% confidence 8 2% confidence 99.3 % confidence



Adversarial Attacks

Definition 2.1 (Adversarial attacks). Write ¢*(x) for the correct label and ¢(z) =
arg max, f(x); for the classifier. An adversarial attack a = a(x), is a perturbation
of the input x which leads to incorrect classification ¢(x 4+ a(x)) # c*(x).

Adversarial attacks seek to find the minimum norm attack vector, which is
an intractable problem (Athalye et al., 2018). An alternative which permits loss

gradients to be used, is to consider the attack vector of a given norm which most
Increases the loss, /.

(3) max /(f(x +a),y)

|a||<e



Scale measures visible attacks
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DNNs are vulnerable to attacks which are invisible to the human eye.
Undefended networks have 100% error rate at .| (in max norm)



% misclassified

100-
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60 -

40 -
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10-3 10-2 10!
Euclidean adversarial distance

Arms race of attack methods and defences
ResNeXt34, CIFAR-10

- Boundary Attack
DeepFool
- [> Projected Gradient

I-FGSM

-  Gradient
FGSM

- Data stability

|

’

Too

o

We tested against toolbox of attacks.
Plotted the error curve as a function
of the adversarial size.

Strongest attacks:
| Iterative |2-projected gradient

2. Iterative Fast Gradient Signed
Method (FGSM)



Adversarial Training: interpretation as
regularization

Write £(x) = £(f(z), ug(x)).
Write Ly, s for the Lipschitz constant of loss of the model.

Adversarial training 1s an effective method for improving robustness to adversarial
attacks. We show that adversarial training using the Fast Signed Gradient Method
(Goodfellow et al., 2014) can be interpreted as regularization by the average of
the 1-norm of the gradient of the loss over the data,

(J%) Jw]= E [((z)+e|| Vi)
(z.y)~D

The choice of norm for the adversarial perturbation can lead to different interpre-
tations: using the 2-norm for adversarial training corresponds to

(2) P[] = () + || Ve()]]

T
(m:y)N’D



Dual norms and attacks

2.1. Derivation of attack directions. The solution of (3) can be approximated
using the dual norm (Boyd & Vandenberghe, 2004, A.1.6). If the co-norm is used,
we recover the Signed Gradient (Goodfellow et al., 2014). However a different
attack \-=*-- "= -"*3ined if we measure attacks in the 2-norm.

Theorem 2.2. The optimal attack vector defined by (3) in a generic norm || - ||
can be approximated to O(c*) with the vector ca, where a is the solution of

(4) av=lol.,  withv=V.(f(x),y)
and || - ||, is the dual norm. In particular a is given by
Vi(z),
a? = - for the co-norm
V()i
(5)
4
a®? Vi) for the 2-norm

V)2



Adversarial Training augmented with Lipschitz
Regularization

(7)) = B (l(x) + [ VE()|l2] + A max [[Va£(z)]|2.
(z,y)~D (z,y)€D

which we refer to as 2 — Lip (tulip). In practice, J* “* outperforms J* and J'.

For example on CIFAR-10, for a ResNeXt model, adversarial training alone reduced

adversarial training error by 29% (measured at adversarial ¢, distance' ¢ = 0.1)

over an undefended model. In contrast, J* with Lipschitz regularization (J* ")
reduces adversarial error by 42% over baseline. See Table 1. We trained with



AT + Tulip Results (2-norm)

Euclidean distance /., distance

. median % Err at median % Err at

Dataset defense method distance e =0.1 distance ¢ =1/16
J? (baseline) 0.09 53.98 | 1.02e—2 99.92

J' (AT, FGSM) 0.18 24.63 | 2.12e—2 96.06

[FAR-1 !

CIEALL0 J? (AT, /5) 0.30 13.54 | 3.45e—2 84.76
J2~ 1P & tanh 0.56 12.12 | 6.00e—2 51.64

J° (baseline) 4.74e—2 74.18 | 5.83e—3 99.61

Jt (AT, FGSM) || 8.08e—2 56.34 | 1.07e—2 08.46

CIEAR-100 J? (AT, /5) 8.6le—2 53.77 | 1.06e—2 08.03
J?~ 1P & tanh 0.136 42.58 | 1.6e—2 93.73

Significant improvement over state-of-the art results
come from augmenting AT with Lipschitz regularization



% misclassified

AT + Tulip Results (2-norm vs max-norm)

ResNeXt34, CIFAR-10 ResNext34, CIFAR-10
100 - 1 100-
30 - 80 -
60 - 60 -
40 - 40-
20 - 20 -
_—— =T | J2~HP & tanh
1073 102 1071 100 1073 102 101 100
!, adversarial distance Euclidian adversarial distance

2-Lip > Al-2 > AT-1 > baseline (for all noise levels on both datasets)



% misclassified

AT + Tulip Results (2-norm)

ResNeXt34, CIFAR-10

100 4 — baseline .
- ==~ AT (£, gradient) /.//
—-= AT (FGSM) 2
AT, tanh & / N
801 ~ " |IVL]| penalty [ )

0+

1072

1073
Euclidean adversarial distance

(A) CIFAR-10

1071 10°

% misclassified

ResNeXt34, CIFAR-100

100 4 — baseline
— -~ AT (£, gradient) 4
— = AT (FGSM) i/
AT, tanh & i/
-7 |IVE| penalty /'r /

1071 10°

102
Euclidean adversarial distance

1073

(B) CIFAR-100




